If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15.1666x^2-421.166666x=0
a = 15.1666; b = -421.166666; c = 0;
Δ = b2-4ac
Δ = -421.1666662-4·15.1666·0
Δ = 177381.36054956
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-421.166666)-\sqrt{177381.36054956}}{2*15.1666}=\frac{421.166666-\sqrt{177381.36054956}}{30.3332} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-421.166666)+\sqrt{177381.36054956}}{2*15.1666}=\frac{421.166666+\sqrt{177381.36054956}}{30.3332} $
| 15.1666x^2-421.166666=0 | | 9x-3/3x+4=8 | | 13x^2-67.83333333x=0 | | x+(x+2)+{2x+4)+(x+6)}=742 | | x+(x+2)+2x+4)+(x+6)}=742 | | 3.57+1.61=4.71-2.63x | | 5/16x-30=2/7x-27 | | 13y-9=30 | | x+(x+2)+2{(x+4)+(x+6)}=742 | | 0.31x-0.22=0.24x+0.13 | | x/4+3/2=2 | | x=4x2+40x+64 | | x+(2x)+(2x-5)=80 | | 4x2=40x+64 | | 9n2–36n=27 | | 4y+9/3=9y-4/5 | | 9(x+8)=4(2x-3) | | 6x^2+6x=-3/2 | | 9(x+8)=4(2x−3) | | (n-6)(n-7)=0 | | 3(q-6)=4(q-2) | | -2(u+18)=-12 | | 64=-10x+14 | | 7g+13=8g | | 12w+17=11w | | Z-8=a+8 | | 7(4x-1)=35+7x | | (3+2i)*(-4-i)=0 | | 3/4x+4x+10=90 | | 6z-117=117 | | 6y-89=73 | | 6x-24=(1/2)(5+2x+7) |